Advertisements
Advertisements
प्रश्न
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
उत्तर
Let the required numbers be \[\frac{a}{r},\text { a and ar } .\] Product of the G.P. = 125
\[\Rightarrow a^3 = 125 \]
\[ \Rightarrow a = 5\]
Sum of the products in pairs = \[87\frac{1}{2} = \frac{175}{2}\]
\[\Rightarrow \frac{a}{r} \times a + a \times ar + ar \times \frac{a}{r} = \frac{175}{2}\]
\[ \Rightarrow \frac{a^2}{r} + a^2 r + a^2 = \frac{175}{2}\]
\[\text {Substituting the value of a }\]
\[ \Rightarrow \frac{25}{r} + 25r + 25 = \frac{175}{2}\]
\[ \Rightarrow 50 r^2 + 50r + 50 = 175r\]
\[ \Rightarrow 50 r^2 - 125r + 50 = 0\]
\[ \Rightarrow 25(2 r^2 - 5r + 2) = 0\]
\[ \Rightarrow 2 r^2 - 4r - r + 2 = 0\]
\[ \Rightarrow 2r(r - 2) - 1(r - 2) = 0\]
\[ \Rightarrow (2r - 1)(r - 2) = 0\]
\[ \therefore r = \frac{1}{2}, 2\]
Hence, the G.P. for a = 5 and r = \[\frac{1}{2}\] is 10, 5 and \[\frac{5}{2}\] .
And, the G.P. for a = 5 and r = 2 is \[\frac{5}{2}\] , 5 and 10.
APPEARS IN
संबंधित प्रश्न
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
Find the geometric means of the following pairs of number:
a3b and ab3
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
The two geometric means between the numbers 1 and 64 are
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn
3, 6, 12, 24, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Express the following recurring decimal as a rational number:
`2.bar(4)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum or difference of two G.P.s, is again a G.P.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.