Advertisements
Advertisements
प्रश्न
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
उत्तर
Let a be the first term, r be the common ratio and S be the sum to infinity of the G.P.
Then S = `"a"/(1 - "r")`, where S = `96/17` and a = 6
∴ `96/17 = 6/(1 - r)`
∴ 1 – r × 96 = 6 × 17
∴ 1 – r = `(6 xx 17)/96`
∴ 1 – r = `17/16`
∴ 16 − 16r = 17
∴ 16r = 16 − 17
r = `-1/16`
Hence, the common ratio = `-1/16`.
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Express the recurring decimal 0.125125125 ... as a rational number.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
Write the product of n geometric means between two numbers a and b.
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For the G.P. if r = `1/3`, a = 9 find t7
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. If t4 = 16, t9 = 512, find S10
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Find : `sum_("n" = 1)^oo 0.4^"n"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.