मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Determine whether the sum to infinity of the following G.P.s exist, if exists find them: 9, 8.1, 7.29, ... - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...

बेरीज

उत्तर

Here, a = 9, r = 0.9

Since l r l = | 0.9 | = 0.9 < 1, the sum to infinity of this G.P. exist and

S = `"a"/(1 - "r")`

= `9/(1 - 0.9)`

= `9/0.1`

= 90.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.3 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Exercise 2.3 | Q 1. (v) | पृष्ठ ३३

संबंधित प्रश्‍न

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Find the geometric means of the following pairs of number:

a3b and ab3


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


For the G.P. if a = `2/3`, t6 = 162, find r.


Which term of the G.P. 5, 25, 125, 625, … is 510?


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


The sum or difference of two G.P.s, is again a G.P.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×