Advertisements
Advertisements
प्रश्न
For the G.P. if a = `2/3`, t6 = 162, find r.
उत्तर
Given, a = `2/3`, t6 = 162
tn = arn–1
∴ t6 = `(2/3)("r"^(6 - 1))`
∴ 162 = `2/3"r"^5`
∴ r5 = `162 xx 3/2`
∴ r5 = 35
∴ r = 3
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find the 4th term from the end of the G.P.
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Find the geometric means of the following pairs of number:
2 and 8
Find the geometric means of the following pairs of number:
−8 and −2
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.