मराठी

How many terms of G.P. 3, 32, 33, … are needed to give the sum 120? - Mathematics

Advertisements
Advertisements

प्रश्न

How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?

बेरीज

उत्तर

Let the total terms of the geometric progression = n.

First term, a = 3, common ratio, r = `3^2/3 = 3`

Sum of n terms = `("a"("r"^"n" - 1))/("r" - 1), "r" >1`

= `(3(3^"n" - 1))/(3 - 1)`

= 120

or 3(3n – 1)

= 120 × 2

= 240

dividing by 3

3n – 1

= `240/3`

= 80

Or 3n = 80 + 1 = 81 = 34

∴ n = 4

Hence, 4 terms are needed.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise 9.3 | Q 13 | पृष्ठ १९२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


Find three numbers in G.P. whose sum is 38 and their product is 1728.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The fractional value of 2.357 is 


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


The two geometric means between the numbers 1 and 64 are 


For the G.P. if r = `1/3`, a = 9 find t7


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


For a G.P. a = 2, r = `-2/3`, find S6


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×