मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct answer from the given alternative. The tenth term of the geometric sequence 14,-12,1,-2, ... is – - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –

पर्याय

  • 1024

  • `1/1024`

  • – 128

  • `(-1)/28`

MCQ

उत्तर

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is – 128

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Miscellaneous Exercise 2.1 [पृष्ठ ४०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Miscellaneous Exercise 2.1 | Q I. (2) | पृष्ठ ४०

संबंधित प्रश्‍न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Find three numbers in G.P. whose sum is 38 and their product is 1728.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For the G.P. if r = `1/3`, a = 9 find t7


Which term of the G.P. 5, 25, 125, 625, … is 510?


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For a G.P. if a = 2, r = 3, Sn = 242 find n


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×