मराठी

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.

बेरीज

उत्तर

Let the geometric progression be a, ar, ar2, …..

First term = a, common ratio = r

Sum of three terms = `("a"(1 - "r"^3))/(1 - "r") = 16` ..........(i)

Fourth term = a × rn -1 = ar4-1 = ar3 

Sum of next three terms = `("ar"^3(1 - "r"^3))/(1 - "r") = 128` ........(ii)

Dividing equation (ii) by (i), we get

`("ar"^3(1 - "r"^3))/(1 - "r") xx (1 - "r")/("a"(1 - "r"^3))`

= `128/16`

= 8

∴ r3 = 8 or r = 2

∴ On keeping the value of r in equation (i)

`("a"(1 - 8))/(1 - 2) = 16` or 7a = 16

∴ a = `16/7`

Here r > 1

∴ Sn = `(16/7(2^"n" - 1))/(2 -1)`

= `16/7 (2^"n" - 1)`

Hence a = `16/7`, r = 2, Sn = `16/7(2"n" - 1)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise 9.3 | Q 14 | पृष्ठ १९२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c, d are in G.P., prove that:

(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. If t4 = 16, t9 = 512, find S10


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Find : `sum_("n" = 1)^oo 0.4^"n"`


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×