मराठी

If X = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the Value of X is - Mathematics

Advertisements
Advertisements

प्रश्न

If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 

पर्याय

  • (a) 7 

  • (b) 8 

  • (c) 9 

  • (d) 10 

MCQ

उत्तर

(b) 8 

\[\left( 4^3 \right)\left( 4^6 \right)\left( 4^9 \right)\left( 4^{12} \right) . . . \left( 4^{3x} \right) = \left( 0 . 0625 \right)^{- 54} \]
\[ \Rightarrow 4^\left( 3 + 6 + 9 + 12 + . . . + 3x \right) = \left( \frac{625}{10000} \right)^{- 54} \]
\[ \Rightarrow 4^{3\left( 1 + 2 + 3 + 4 + . . . + x \right)} = \left( \frac{1}{16} \right)^{- 54} \]
\[ \Rightarrow 4^{3\left( \frac{x\left( x + 1 \right)}{2} \right)} = \left( \frac{1}{16} \right)^{- 54} \]
\[ \Rightarrow 4^{3\left( \frac{x\left( x + 1 \right)}{2} \right)} = \left( 4^{- 2} \right)^{- 54} \]
\[\text{ Comparing both the sides }: \]
\[ \Rightarrow 3\left( \frac{x\left( x + 1 \right)}{2} \right) = 108\]
\[ \Rightarrow x\left( x + 1 \right) = 72\]
\[ \Rightarrow x^2 + x - 72 = 0\]
\[ \Rightarrow x^2 + 9x - 8x - 72 = 0\]
\[ \Rightarrow x\left( x + 9 \right) - 8\left( x + 9 \right) = 0\]
\[ \Rightarrow \left( x + 9 \right)\left( x - 8 \right) = 0\]
\[ \Rightarrow x = 8, - 9\]
\[ \Rightarrow x = 8 [ \because \text{ x is positive }]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.8 | Q 18 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

Find three numbers in G.P. whose sum is 38 and their product is 1728.


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


For the G.P. if r = − 3 and t6 = 1701, find a.


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. If t4 = 16, t9 = 512, find S10


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Express the following recurring decimal as a rational number:

`2.bar(4)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×