Advertisements
Advertisements
प्रश्न
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
उत्तर
\[\text { Here, first term }, a = 18 \]
\[\text { and common ratio }, r = \frac{- 2}{3}\]
\[\text { Let the } n^{th} \text { term be } \frac{512}{729} . \]
\[ \therefore a r^{n - 1} = \frac{512}{729}\]
\[ \Rightarrow \left( 18 \right) \left( \frac{- 2}{3} \right)^{n - 1} = \frac{512}{729}\]
\[ \Rightarrow \left( \frac{- 2}{3} \right)^{n - 1} = \frac{512}{729} \times \frac{1}{18} = \frac{256}{6561}\]
\[ \Rightarrow \left( \frac{- 2}{3} \right)^{n - 1} = \left( \frac{- 2}{3} \right)^8 \]
\[ \Rightarrow n - 1 = 8 \]
\[ \Rightarrow n = 9\]
\[\text { Thus, the } 9^{th} \text { term of the given G . P . is } \frac{512}{729} .\]
APPEARS IN
संबंधित प्रश्न
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Find : `sum_("n" = 1)^oo 0.4^"n"`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.