मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q

बेरीज

उत्तर

Let A be the first term and R be the common ratio of the G.P.

Then tn = ARn–1

Now, tp = x, tq = y and tr = z

∴ ARp–1 = x, ARq–1 = y and ARr–1 = z

∴ xq–r .yr–p .zp–q 

= (ARp–1)q–r . (ARq–1)r–p . (ARr–1)p–q

`="A"^("q"–"r") * "R"^("pq"–"pr"–"q"+"r") * "A"^("r"–"p") * "R"^("qr"–"pq"-"r"+"p") * "A"^("p"–"q") *"R"^("pr"–"qr"–"p"+"q")`

= `"A"^("q"–"r"+"r"–"p"+"p"-"q") * "R"^("pq"–"pr"–"q"+"r"+"qr"–"pq"–"r"+"p"+"pr"–"qr"–""p"+"q")`

= A° · R° 

= 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (26) | पृष्ठ ४२

संबंधित प्रश्‍न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


The sum or difference of two G.P.s, is again a G.P.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×