मराठी

Find an Infinite G.P. Whose First Term is 1 and Each Term is the Sum of All the Terms Which Follow It. - Mathematics

Advertisements
Advertisements

प्रश्न

Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.

उत्तर

Here, first term, a = 1
Common ratio = r

\[\therefore a_n = \left[ a_{n + 1} + a_{n + 2} + a_{n + 3} + . . . . . \infty \right] \forall n \in N\]

\[ \Rightarrow a r^{n - 1} = a r^n + a r^{n - 1} + . . . . . \infty \]

\[ \Rightarrow r^{n - 1} = \frac{r^n}{1 - r} \left[ \text { Putting a } = 1 \right]\]

\[ \Rightarrow r^{n - 1} \left( 1 - r \right) = r^n \]

\[ \Rightarrow 1 - r = r\]

\[ \Rightarrow 2r = 1 \]

\[ \Rightarrow r = \frac{1}{2}\]

\[\text { Thus, the infinte G . P is } 1, \frac{1}{2}, \frac{1}{4}, . . . \infty .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.4 | Q 10 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


Find the geometric means of the following pairs of number:

a3b and ab3


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


For the G.P. if a = `2/3`, t6 = 162, find r.


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. If t4 = 16, t9 = 512, find S10


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×