Advertisements
Advertisements
प्रश्न
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
उत्तर
tn = `(5^("n" - 2))/(7^("n" - 3)) = (5.5^("n" - 3))/(7^("n" - 3))`
∴ tn = `5(5/7)^("n" - 3)`
∴ tn+1 = `5(5/7)^("n" + 1 - 3)`
= `5(5/7)^("n" - 2)`
∴ `("t"_("n" + 1))/"t"_"n" = (5(5/7)^("n" - 2))/(5(5/7)^("n" - 3))`
= `(5/7)^("n" - 2 - "n" + 3)`
= `5/7`, which is a constant
∴ the sequence is a G.P. whose common ratio is `5/7`
Now, tn = `5(5/7)^("n" - 3)`
∴ the first term = t1 = `5(5/7)^(1 - 3)`
= `5(5/7)^(-2)`
= `5(7/5)^2`
= `49/5`
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Find the geometric means of the following pairs of number:
2 and 8
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. if S5 = 1023 , r = 4, Find a
For a G.P. if a = 2, r = 3, Sn = 242 find n
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum or difference of two G.P.s, is again a G.P.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.