हिंदी

Answer the following: For a sequence , if tn = 5n-27n-3, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.

योग

उत्तर

tn = `(5^("n" - 2))/(7^("n" - 3)) = (5.5^("n" - 3))/(7^("n" - 3))`

∴ tn = `5(5/7)^("n" - 3)`

∴ tn+1 = `5(5/7)^("n" + 1 - 3)`

= `5(5/7)^("n" - 2)`

∴ `("t"_("n" + 1))/"t"_"n" = (5(5/7)^("n" - 2))/(5(5/7)^("n" - 3))`

= `(5/7)^("n" - 2 - "n" + 3)`

= `5/7`, which is a constant

∴  the sequence is a G.P. whose common ratio is `5/7`

Now, tn = `5(5/7)^("n" - 3)`

∴ the first term = t1 = `5(5/7)^(1 - 3)`

= `5(5/7)^(-2)`

= `5(7/5)^2`

= `49/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (4) | पृष्ठ ४१

संबंधित प्रश्न

Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


For the G.P. if a = `7/243`, r = 3 find t6.


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Express the following recurring decimal as a rational number:

`0.bar(7)`


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


The third term of G.P. is 4. The product of its first 5 terms is ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×