हिंदी

Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).

योग

उत्तर

geometric progressions x3, x5, x7, …..

First term, a = x3, common ratio, r = `"x"^5/"x"^3 = "x"^2`

∴ Sum of n terms = `("a"(1 - "r"^"n"))/(1 - "r")`

= `("x"^3 xx [1 - ("x"^2)^"n"])/(1 - "x"^2)`

= `("x"^3 xx [1 - "x"^(2"n")])/(1 - "x"^2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise 9.3 | Q 10 | पृष्ठ १९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find the rational numbers having the following decimal expansion: 

\[3 . 5\overline 2\]


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


Find the geometric means of the following pairs of number:

a3b and ab3


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


For the G.P. if a = `7/243`, r = 3 find t6.


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For a G.P. If t3 = 20 , t6 = 160 , find S7


For a G.P. If t4 = 16, t9 = 512, find S10


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Find : `sum_("n" = 1)^oo 0.4^"n"`


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×