हिंदी

If a+bxa-bx=b+cxb-cx=c+dxc-dx(x≠0) then show that a, b, c and d are in G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.

योग

उत्तर

We know that if `"a"/"b" = "c"/"d"` then `("a" + "b")/("a" - "b") = ("c" + " d")/("c" - "d")`

According to this rule, if `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "cx")/("c" - "cx")`

So, `(("a" + "bx") + ("a" - "bx"))/(("a" + "bx") - ("a" - "bx")) = ((" b" + "cx") + ("b" - "cx"))/(("b" + "cx") - ("b" - "cx"))`

= `(("c" + "dx") + ("c" - "dx"))/(("c" + "dx") - ("c" - "dx"))`

`(2"a")/(2"bx") = (2"b")/(2"cx") = (2"c")/(2"dx")`

or `"a"/"b" = "b"/"c" = "c"/"d"`

Hence a, b, c, d are in geometric progression.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ १९९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Miscellaneous Exercise | Q 13 | पृष्ठ १९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Find three numbers in G.P. whose sum is 38 and their product is 1728.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


The fractional value of 2.357 is 


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


The sum or difference of two G.P.s, is again a G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×