Advertisements
Advertisements
प्रश्न
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
उत्तर
We know that if `"a"/"b" = "c"/"d"` then `("a" + "b")/("a" - "b") = ("c" + " d")/("c" - "d")`
According to this rule, if `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "cx")/("c" - "cx")`
So, `(("a" + "bx") + ("a" - "bx"))/(("a" + "bx") - ("a" - "bx")) = ((" b" + "cx") + ("b" - "cx"))/(("b" + "cx") - ("b" - "cx"))`
= `(("c" + "dx") + ("c" - "dx"))/(("c" + "dx") - ("c" - "dx"))`
`(2"a")/(2"bx") = (2"b")/(2"cx") = (2"c")/(2"dx")`
or `"a"/"b" = "b"/"c" = "c"/"d"`
Hence a, b, c, d are in geometric progression.
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find three numbers in G.P. whose sum is 38 and their product is 1728.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
The fractional value of 2.357 is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find : `sum_("n" = 1)^oo 0.4^"n"`
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
The sum or difference of two G.P.s, is again a G.P.