हिंदी

If a = 1 + B + B2 + B3 + ... to ∞, Then Write B in Terms of A. - Mathematics

Advertisements
Advertisements

प्रश्न

If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.

उत्तर

\[\text{ Here, a = 1, b, b^2 , b^3 , . . . \infty form an infinite G . P } . \]
\[ \]
\[ \therefore S_\infty = a = 1 + b + b^2 + b^3 + . . . \infty = \frac{1}{1 - b}\]
\[ \Rightarrow a = \frac{1}{1 - b}\]
\[ \Rightarrow 1 - b = \frac{1}{a} \]
\[ \Rightarrow b = 1 - \frac{1}{a}\]
\[ \therefore b = \frac{a - 1}{a}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.7 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.7 | Q 10 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Find the geometric means of the following pairs of number:

a3b and ab3


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers x − 6, 2x and x2 are in G.P. Find x


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×