हिंदी

If S Denotes the Sum of an Infinite G.P. S1 Denotes the Sum of the Squares of Its Terms, Then Prove that the First Term and Common Ratio Are Respectively 2 S S 1 S 2 + S 1 and S 2 − S 1 S 2 + S 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]

उत्तर

\[S = \frac{a}{\left( 1 - r \right)} . . . . . . . (i)\]

\[\text { And }, S_1 = \frac{a^2}{\left( 1 - r^2 \right)} \]

\[ \Rightarrow S_1 = \frac{a^2}{\left( 1 - r \right)\left( 1 + r \right)} . . . . . . . (ii)\]

\[\text { Now, putting the value of a in equation (ii) from equation } (i): \]

\[ S_1 = \frac{S^2 \left( 1 - r \right)^2}{\left( 1 - r \right)\left( 1 + r \right)}\]

\[ \Rightarrow S_1 = \frac{S^2 \left( 1 - r \right)}{\left( 1 + r \right)}\]

\[ \Rightarrow S_1 \left( 1 + r \right) = S^2 \left( 1 - r \right)\]

\[ \Rightarrow r\left( S_1 + S^2 \right) = S^2 - S_1 \]

\[ \Rightarrow r = \frac{\left( S^2 - S_1 \right)}{\left( S_1 + S^2 \right)}\]

\[\text { Putting the value of r in equation }(i): \]

\[ \Rightarrow a = S\left( 1 - r \right)\]

\[ \Rightarrow a = S\left( 1 - \frac{\left( S^2 - S_1 \right)}{\left( S_1 + S^2 \right)} \right)\]

\[ \Rightarrow a = S\left( \frac{\left( S_1 + S^2 \right) - \left( S^2 - S_1 \right)}{\left( S_1 + S^2 \right)} \right)\]

\[ \Rightarrow a = \frac{2 {SS}_1}{\left( S_1 + S^2 \right)}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.4 | Q 13 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Find the geometric means of the following pairs of number:

2 and 8


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For the G.P. if a = `7/243`, r = 3 find t6.


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


For a G.P. If t4 = 16, t9 = 512, find S10


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×