English

If S Denotes the Sum of an Infinite G.P. S1 Denotes the Sum of the Squares of Its Terms, Then Prove that the First Term and Common Ratio Are Respectively 2 S S 1 S 2 + S 1 and S 2 − S 1 S 2 + S 1 - Mathematics

Advertisements
Advertisements

Question

If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]

Solution

\[S = \frac{a}{\left( 1 - r \right)} . . . . . . . (i)\]

\[\text { And }, S_1 = \frac{a^2}{\left( 1 - r^2 \right)} \]

\[ \Rightarrow S_1 = \frac{a^2}{\left( 1 - r \right)\left( 1 + r \right)} . . . . . . . (ii)\]

\[\text { Now, putting the value of a in equation (ii) from equation } (i): \]

\[ S_1 = \frac{S^2 \left( 1 - r \right)^2}{\left( 1 - r \right)\left( 1 + r \right)}\]

\[ \Rightarrow S_1 = \frac{S^2 \left( 1 - r \right)}{\left( 1 + r \right)}\]

\[ \Rightarrow S_1 \left( 1 + r \right) = S^2 \left( 1 - r \right)\]

\[ \Rightarrow r\left( S_1 + S^2 \right) = S^2 - S_1 \]

\[ \Rightarrow r = \frac{\left( S^2 - S_1 \right)}{\left( S_1 + S^2 \right)}\]

\[\text { Putting the value of r in equation }(i): \]

\[ \Rightarrow a = S\left( 1 - r \right)\]

\[ \Rightarrow a = S\left( 1 - \frac{\left( S^2 - S_1 \right)}{\left( S_1 + S^2 \right)} \right)\]

\[ \Rightarrow a = S\left( \frac{\left( S_1 + S^2 \right) - \left( S^2 - S_1 \right)}{\left( S_1 + S^2 \right)} \right)\]

\[ \Rightarrow a = \frac{2 {SS}_1}{\left( S_1 + S^2 \right)}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.4 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.4 | Q 13 | Page 40

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


Write the product of n geometric means between two numbers a and b

 


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For a G.P. a = 2, r = `-2/3`, find S6


For a G.P. If t4 = 16, t9 = 512, find S10


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×