Advertisements
Advertisements
Question
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
Solution
\[\text { Let r be the common ratio of the given G . P } . \]
\[\text { Then }, a_4 = \left( a_2 \right)^2 \left[ \text { Given } \right]\]
\[\text { Now, }a r^3 = a^2 r^2 \]
\[ \Rightarrow r = a \]
\[ \Rightarrow r = - 3 \left[ \text { Putting } a = - 3 \right] \]
\[ \therefore a_7 = a r^6 \]
\[ \Rightarrow a_7 = \left( - 3 \right) \left( - 3 \right)^6 \left[ \text { Putting a = - 3 and }r = - 3 \right] \]
\[ \Rightarrow a_7 = \left( - 3 \right)\left( - 729 \right) \]
\[ \Rightarrow a_7 = - 2187\]
\[\text { Thus, the } 7^{th} \text { term of the G . P . is } - 2187 .\]
APPEARS IN
RELATED QUESTIONS
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
The two geometric means between the numbers 1 and 64 are
For the G.P. if r = `1/3`, a = 9 find t7
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a G.P. If t3 = 20 , t6 = 160 , find S7
Express the following recurring decimal as a rational number:
`2.bar(4)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.