Advertisements
Advertisements
Question
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Solution
Here, a = 1 and r = − \[\frac{1}{2}\] .
\[\therefore S_9 = a\left( \frac{1 - r^9}{1 - r} \right) \]
\[ = 1 \left( \frac{1 - \left( - \frac{1}{2} \right)^9}{1 - \left( - \frac{1}{2} \right)} \right) \]
\[ = \frac{1 - \left( - \frac{1}{512} \right)}{\frac{3}{2}}\]
\[ = \frac{\frac{513}{512}}{\frac{3}{2}}\]
\[ = \frac{513 \times 2}{512 \times 3}\]
\[ = \frac{171}{256}\]
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find the 4th term from the end of the G.P.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the rational number whose decimal expansion is \[0 . 423\].
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
The fractional value of 2.357 is
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.