English

If Logxa, Ax/2 and Logb X Are in G.P., Then Write the Value of X. - Mathematics

Advertisements
Advertisements

Question

If logxa, ax/2 and logb x are in G.P., then write the value of x.

Solution

\[\log_x a, a^\frac{x}{2} \text { and } \log_b x \text { are in G . P } . \]

\[ \therefore \left( a^\frac{x}{2} \right)^2 = \log_x a \times \log_b x \]

\[ \Rightarrow a^x = \frac{\log_b a}{\log_b x} \times \log_b x \]

\[ \Rightarrow a^x = \log_b a \]

\[\text { Now, by taking } \log_a \text { on both the sides }: \]

\[ \Rightarrow x = \log_a \left( \log_b a \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.7 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.7 | Q 3 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Express the recurring decimal 0.125125125 ... as a rational number.


Find the rational number whose decimal expansion is \[0 . 423\].


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Which term of the G.P. 5, 25, 125, 625, … is 510?


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.


For a G.P. a = 2, r = `-2/3`, find S6


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Express the following recurring decimal as a rational number:

`2.bar(4)`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×