Advertisements
Advertisements
Question
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
Options
(a) 1/3
(b) 2/3
(c) 1/4
(d) 3/4
Solution
(d) 3/4
\[\text{ Let the terms of the G . P } . be a, a_2 , a_3 , a_4 , a_5 , . . . , \infty . \]
\[\text{ And, let the common ratio be r } . \]
\[\text{ Now }, a + a_2 = 1\]
\[ \therefore a + ar = 1 . . . . . . . . (i)\]
\[\text{ Also }, a = 2\left( a_2 + a_3 + a_4 + a_5 + . . . \infty \right)\]
\[ \Rightarrow a = 2\left( ar + a r^2 + a r^3 + a r^4 + . . . \infty \right)\]
\[ \Rightarrow a = 2\left( \frac{ar}{1 - r} \right)\]
\[ \Rightarrow 1 - r = 2r\]
\[ \Rightarrow 3r = 1\]
\[ \Rightarrow r = \frac{1}{3}\]
\[\text{ Putting the value of r in } (i): \]
\[a + \frac{a}{3} = 1\]
\[ \Rightarrow \frac{4a}{3} = 1\]
\[ \Rightarrow 4a = 3\]
\[ \Rightarrow a = \frac{3}{4}\]
\[\]
APPEARS IN
RELATED QUESTIONS
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
For the G.P. if r = − 3 and t6 = 1701, find a.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For a G.P. if a = 2, r = 3, Sn = 242 find n
For a G.P. If t3 = 20 , t6 = 160 , find S7
Express the following recurring decimal as a rational number:
`51.0bar(2)`
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.