Advertisements
Advertisements
प्रश्न
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
विकल्प
(a) 1/3
(b) 2/3
(c) 1/4
(d) 3/4
उत्तर
(d) 3/4
\[\text{ Let the terms of the G . P } . be a, a_2 , a_3 , a_4 , a_5 , . . . , \infty . \]
\[\text{ And, let the common ratio be r } . \]
\[\text{ Now }, a + a_2 = 1\]
\[ \therefore a + ar = 1 . . . . . . . . (i)\]
\[\text{ Also }, a = 2\left( a_2 + a_3 + a_4 + a_5 + . . . \infty \right)\]
\[ \Rightarrow a = 2\left( ar + a r^2 + a r^3 + a r^4 + . . . \infty \right)\]
\[ \Rightarrow a = 2\left( \frac{ar}{1 - r} \right)\]
\[ \Rightarrow 1 - r = 2r\]
\[ \Rightarrow 3r = 1\]
\[ \Rightarrow r = \frac{1}{3}\]
\[\text{ Putting the value of r in } (i): \]
\[a + \frac{a}{3} = 1\]
\[ \Rightarrow \frac{4a}{3} = 1\]
\[ \Rightarrow 4a = 3\]
\[ \Rightarrow a = \frac{3}{4}\]
\[\]
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if r = − 3 and t6 = 1701, find a.
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers x − 6, 2x and x2 are in G.P. Find x
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
Express the following recurring decimal as a rational number:
`0.bar(7)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.