Advertisements
Advertisements
प्रश्न
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
उत्तर
According to the midpoint theorem, the sides of each triangle formed by joining the midpoints of an equilateral triangle are half of the sides of the equilateral triangle. In other words, the triangles formed are equilateral triangles with sides 18 cm, 9 cm, 4.5 cm, 2.25 cm, ...
\[(i) \text { Sum of the perimeters of all the triangles }, P = 3 \times 18 + 3 \times 9 + 3 \times 4 . 5 + 3 \times 2 . 25 + . . . \infty \]
\[ \Rightarrow P = 3 \times \left( 18 + 9 + 4 . 5 + 2 . 25 + . . . \infty \right)\]
\[\text { It is a G . P . with a = 18 and r } = \frac{1}{2} . \]
\[ \therefore P = 3 \times \left( \frac{18}{1 - \frac{1}{2}} \right)\]
\[ \Rightarrow P = 3 \times 36 = 108 cm\]
\[(ii) \text { Sum of the areas of all the triangles, A } = \frac{\sqrt{3}}{4} \left( 18 \right)^2 + \frac{\sqrt{3}}{4} \left( 9 \right)^2 + \frac{\sqrt{3}}{4} \left( 4 . 5 \right)^2 + . . . \infty \]
\[ \Rightarrow A = \frac{\sqrt{3}}{4}\left( \left( 18 \right)^2 + \left( 9 \right)^2 + \left( 4 . 5 \right)^2 + . . . \infty \right)\]
\[\text { It is a G . P . with a } = \left( 18 \right)^2 \text { and } r = \frac{1}{4} . \]
\[ \therefore A = \frac{\sqrt{3}}{4}\left( \frac{\left( 18 \right)^2}{1 - \frac{1}{4}} \right)\]
\[ \Rightarrow A = \frac{\sqrt{3}}{3} \times 324\]
\[ \Rightarrow A = 108\sqrt{3} {cm}^2\]
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If logxa, ax/2 and logb x are in G.P., then write the value of x.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.