Advertisements
Advertisements
प्रश्न
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
उत्तर
Here, a = 3
Common ratio,r = 3
Sum of n terms, Sn = 381
∴ Sn = 3 + 6 + 12 + ... + n terms
\[\Rightarrow 381 = 3\left( \frac{2^n - 1}{2 - 1} \right) \]
\[ \Rightarrow 381 = 3 \left( 2^n - 1 \right)\]
\[ \Rightarrow 127 = 2^n - 1\]
\[ \Rightarrow 2^n = 128 \]
\[ \Rightarrow 2^n = 2^7 \]
\[ \therefore n = 7\]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
Find the geometric means of the following pairs of number:
a3b and ab3
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
Write the product of n geometric means between two numbers a and b.
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
For a G.P. if S5 = 1023 , r = 4, Find a
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.