Advertisements
Advertisements
प्रश्न
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
उत्तर
It is given that a, b, c are in A.P.
∴ b – a = c – b … (1)
It is given that b, c, d, are in G.P.
∴ c2 = bd … (2)
Also ` 1/c, 1/d,1/e` are in A.P.
Thus, a, c, and e are in G.P.
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Find the 4th term from the end of the G.P.
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
Find the geometric means of the following pairs of number:
a3b and ab3
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For the G.P. if r = `1/3`, a = 9 find t7
For the G.P. if a = `7/243`, r = 3 find t6.
For the G.P. if r = − 3 and t6 = 1701, find a.
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.