Advertisements
Advertisements
प्रश्न
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
उत्तर
a, b, c and d are in G.P.
\[\therefore b^2 = ac\]
\[ad = bc \]
\[ c^2 = bd\] .......(1)
\[\left( b^2 + c^2 \right)^2 = \left( b^2 \right)^2 + 2 b^2 c^2 + \left( c^2 \right)^2 \]
\[ \Rightarrow \left( b^2 + c^2 \right)^2 = \left( ac \right)^2 + b^2 c^2 + b^2 c^2 + \left( bd \right)^2 \left[\text { Using } (1) \right]\]
\[ \Rightarrow \left( b^2 + c^2 \right)^2 = a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 \left[ \text { Using } (1) \right]\]
\[ \Rightarrow \left( b^2 + c^2 \right)^2 = a^2 \left( c^2 + d^2 \right) + b^2 \left( c^2 + d^2 \right)\]
\[ \Rightarrow \left( b^2 + c^2 \right)^2 = \left( a^2 + b^2 \right)\left( c^2 + d^2 \right)\]
\[\text {Therefore, } \left( a^2 + b^2 \right), \left( c^2 + d^2 \right)\text{ and } \left( b^2 + c^2 \right) \text { are also in G . P } .\]
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c are in G.P., then prove that:
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
The two geometric means between the numbers 1 and 64 are
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
The numbers 3, x, and x + 6 form are in G.P. Find nth term
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. If t3 = 20 , t6 = 160 , find S7
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
The third term of a G.P. is 4, the product of the first five terms is ______.