Advertisements
Advertisements
प्रश्न
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
उत्तर
\[\text { Let a be the first term and r be the common ratio of the given G . P }. \]
\[ \therefore a_{4 =} 27 \text { and } a_7 = 729\]
\[ \Rightarrow a r^3 = 27 \text { and }a r^6 = 729\]
\[ \Rightarrow \frac{a r^6}{a r^3} = \frac{729}{27}\]
\[ \Rightarrow r^3 = 3^3 \]
\[ \Rightarrow r = 3\]
\[\text { Putting } r = 3\text { in a } r^3 = 27\]
\[a \left( 3 \right)^3 = 27 \]
\[ \Rightarrow a = 1\]
\[\text { Thus, the given G . P . is } 1, 3, 9, . . . \]
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the rational number whose decimal expansion is \[0 . 423\].
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Which term of the G.P. 5, 25, 125, 625, … is 510?
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
The numbers 3, x, and x + 6 form are in G.P. Find x
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. If t3 = 20 , t6 = 160 , find S7
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.