Advertisements
Advertisements
प्रश्न
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
उत्तर
\[\text { Let a be the first term and r be the common ratio of the given G . P }. \]
\[ \therefore a_{4 =} 27 \text { and } a_7 = 729\]
\[ \Rightarrow a r^3 = 27 \text { and }a r^6 = 729\]
\[ \Rightarrow \frac{a r^6}{a r^3} = \frac{729}{27}\]
\[ \Rightarrow r^3 = 3^3 \]
\[ \Rightarrow r = 3\]
\[\text { Putting } r = 3\text { in a } r^3 = 27\]
\[a \left( 3 \right)^3 = 27 \]
\[ \Rightarrow a = 1\]
\[\text { Thus, the given G . P . is } 1, 3, 9, . . . \]
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Evaluate `sum_(k=1)^11 (2+3^k )`
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following geometric progression:
(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
Write the product of n geometric means between two numbers a and b.
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The numbers 3, x, and x + 6 form are in G.P. Find x
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
The third term of G.P. is 4. The product of its first 5 terms is ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.