मराठी

Write the Product of N Geometric Means Between Two Numbers a and B. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the product of n geometric means between two numbers a and b

 

उत्तर

\[\text{ Let G_1 , G_2 , . . . , G_n be n geometric means between two quantities a and b } . \]
\[\text{ Thus, a, G_1 , G_2 , . . . , G_n , b is a G . P } . \]
\[\text{ Let r be the common ratio of this G . P } . \]
\[ \therefore r = \left( \frac{b}{a} \right)^\frac{1}{n + 1} \]
\[\text{ And }, G_1 = ar, G_2 = a r^2 , G_3 = a r^3 , . . . , G_n = a r^n \]
\[\text{ Now, product of n geometric means } = G_1 \cdot G_2 \cdot G_3 \cdot . . . \cdot G_n = \left( ar \right)\left( a r^2 \right)\left( a r^3 \right) . . . \left( a r^n \right)\]
\[ = \left( ar \right)\left( a r^2 \right)\left( a r^3 \right) . . . . . . \left( a r^n \right) \]
\[ = a^n r^{1 + 2 + 3 + . . . + n} \]
\[ = a^n r^\frac{n\left( n + 1 \right)}{2} \]
\[ = a^n \left\{ \left( \frac{b}{a} \right)^\frac{1}{n + 1} \right\}^\frac{n\left( n + 1 \right)}{2} \]
\[ = a^n \left( \frac{b}{a} \right)^\frac{n}{2} \]
\[ = a^\frac{n}{2} b^\frac{n}{2} \]
\[ = \left( ab \right)^\frac{n}{2} \]
\[ \]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.7 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.7 | Q 9 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For the G.P. if r = `1/3`, a = 9 find t7


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find : `sum_("n" = 1)^oo 0.4^"n"`


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×