Advertisements
Advertisements
प्रश्न
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
उत्तर
a, b, c and d are in G.P.
\[\therefore b^2 = ac\]
\[ad = bc \]
\[ c^2 = bd\] .......(1)
\[\left( \frac{1}{b^2 + c^2} \right)^2 = \left( \frac{1}{b^2} \right)^2 + \frac{2}{b^2 c^2} + \left( \frac{1}{c^2} \right)^2 \]
\[ \Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \left( \frac{1}{ac} \right)^2 + \frac{1}{b^2 c^2} + \frac{1}{b^2 c^2} + \left( \frac{1}{bd} \right)^2 \left[ \text { Using } (1) \right]\]
\[ \Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \frac{1}{a^2 c^2} + \frac{1}{a^2 d^2} + \frac{1}{b^2 c^2} + \frac{1}{b^2 d^2} \left[ \text { Using }(1) \right]\]
\[ \Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \frac{1}{a^2}\left( \frac{1}{c^2} + \frac{1}{d^2} \right) + \frac{1}{b^2}\left( \frac{1}{c^2} + \frac{1}{d^2} \right)\]
\[ \Rightarrow \left( \frac{1}{b^2 + c^2} \right)^2 = \left( \frac{1}{a^2 + b^2} \right)\left( \frac{1}{c^2} + \frac{1}{d^2} \right)\]
\[\text{ Therefore }, \left( \frac{1}{b^2 + c^2} \right), \left( \frac{1}{c^2 + d^2} \right)\text { and } \left( \frac{1}{b^2 + c^2} \right) \text { are also in G . P } .\]
APPEARS IN
संबंधित प्रश्न
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Find the 4th term from the end of the G.P.
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Check whether the following sequence is G.P. If so, write tn.
7, 14, 21, 28, …
For the G.P. if a = `7/243`, r = 3 find t6.
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. if a = 2, r = 3, Sn = 242 find n
Express the following recurring decimal as a rational number:
`51.0bar(2)`
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
The sum or difference of two G.P.s, is again a G.P.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.