Advertisements
Advertisements
प्रश्न
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
उत्तर
Here, a = 2 and r = 3.
\[\therefore S_7 = a\left( \frac{r^7 - 1}{r - 1} \right) \]
\[ = 2 \left( \frac{3^7 - 1}{3 - 1} \right) \]
\[ = 2187 - 1\]
\[ = 2186\]
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
In a G.P. if the (m + n)th term is p and (m − n)th term is q, then its mth term is
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Express the following recurring decimal as a rational number:
`2.3bar(5)`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.