मराठी

If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 . - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .

बेरीज

उत्तर

a, b, c, d are in G.P.

Therefore,

bc = ad … (1)

b2 = ac … (2)

c2 = bd … (3)

It has to be proved that,

(a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc – cd)2

R.H.S.

= (ab + bc + cd)2

= (ab + ad + cd)2 [Using (1)]

= [ab + d (a + c)]2

= a2b2 + 2abd (a + c) + d2 (a + c)2

= a2b2 +2a2bd + 2acbd + d2(a2 + 2ac + c2)

= a2b2 + 2a2c2 + 2b2c2 + d2a2 + 2d2b2 + d2c2 [Using (1) and (2)]

= a2b2 + a2c2 + a2c2 + b2c+ b2c2 + d2a2 + d2b2 + d2b2 + d2c2

= a2b2 + a2c2 + a2d+ b× b2 + b2c2 + b2d2 + c2b2 + c× c2 + c2d2

[Using (2) and (3) and rearranging terms]

= a2(b2 + c2 + d2) + b2 (b2 + c2 + d2) + c2 (b2+ c2 + d2)

= (a2 + b2 + c2) (b2 + c2 + d2)

= L.H.S.

∴ L.H.S. = R.H.S.

∴ (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise 9.3 | Q 25 | पृष्ठ १९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Evaluate `sum_(k=1)^11 (2+3^k )`


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find the sum of the following geometric progression:

1, −1/2, 1/4, −1/8, ... to 9 terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


Write the product of n geometric means between two numbers a and b

 


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


For a G.P. If t3 = 20 , t6 = 160 , find S7


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×