मराठी

Find the Sum of the Following Geometric Progression: 1, 3, 9, 27, ... to 8 Terms; - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;

उत्तर

 Here, a = 1 and r = 3.

\[\therefore S_8 = a\left( \frac{r^8 - 1}{r - 1} \right) \]

\[ = 1 \left( \frac{3^8 - 1}{3 - 1} \right) \]

\[ = \frac{6561 - 1}{2}\]

\[ = 3280\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.3 [पृष्ठ २७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.3 | Q 1.2 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


Check whether the following sequence is G.P. If so, write tn.

`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...


For the G.P. if a = `2/3`, t6 = 162, find r.


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. If t3 = 20 , t6 = 160 , find S7


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


The third term of a G.P. is 4, the product of the first five terms is ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×