Advertisements
Advertisements
प्रश्न
If a, b, c are in G.P., then prove that:
उत्तर
\[\text{ a, b and c are in G . P }. \]
\[ \therefore b^2 = ac . . . . . . . . (i)\]
\[\text { Now, LHS }= \frac{a^2 + ab + b^2}{bc + ca + ab}\]
\[ = \frac{a^2 + ab + ac}{bc + b^2 + ab} \left[ \text { Using } (i) \right]\]
\[ = \frac{a\left( a + b + c \right)}{b\left( c + b + a \right)}\]
\[ = \frac{a}{b}\]
\[ = \frac{1}{r}\]
\[\text { Here, r = common ratio }\]
\[\text { RHS }= \frac{b + a}{c + b}\]
\[ = \frac{ar + a}{a r^2 + ar}\]
\[ = \frac{a(r + 1)}{ar(r + 1)}\]
\[ = \frac{1}{r}\]
\[ \therefore\text { LHS = RHS }\]
APPEARS IN
संबंधित प्रश्न
For what values of x, the numbers `-2/7, x, -7/2` are in G.P?
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 8th term of the G.P. 0.3, 0.06, 0.012, ...
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If logxa, ax/2 and logb x are in G.P., then write the value of x.
The fractional value of 2.357 is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. a = 2, r = `-2/3`, find S6
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.