Advertisements
Advertisements
Question
If a, b, c are in G.P., then prove that:
Solution
\[\text{ a, b and c are in G . P }. \]
\[ \therefore b^2 = ac . . . . . . . . (i)\]
\[\text { Now, LHS }= \frac{a^2 + ab + b^2}{bc + ca + ab}\]
\[ = \frac{a^2 + ab + ac}{bc + b^2 + ab} \left[ \text { Using } (i) \right]\]
\[ = \frac{a\left( a + b + c \right)}{b\left( c + b + a \right)}\]
\[ = \frac{a}{b}\]
\[ = \frac{1}{r}\]
\[\text { Here, r = common ratio }\]
\[\text { RHS }= \frac{b + a}{c + b}\]
\[ = \frac{ar + a}{a r^2 + ar}\]
\[ = \frac{a(r + 1)}{ar(r + 1)}\]
\[ = \frac{1}{r}\]
\[ \therefore\text { LHS = RHS }\]
APPEARS IN
RELATED QUESTIONS
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Evaluate `sum_(k=1)^11 (2+3^k )`
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Which term of the G.P. 5, 25, 125, 625, … is 510?
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Find : `sum_("n" = 1)^oo 0.4^"n"`
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If for a G.P. first term is (27)2 and seventh term is (8)2, find S8
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.