Advertisements
Advertisements
Question
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Solution
% Sequence a, ar, ar2, …. The sequence formed by the product of arn – 1 and the corresponding terms of A, AR, AR2, .... ARn – 1
`("Second term")/("First term")` = `(arAR)/(aA) = rR`
`("Third term")/("Second term")` = `(ar^2 AR^2)/(arAR) = rR`
Thus, the above sequence forms a G.P. and the common ratio is rR.
APPEARS IN
RELATED QUESTIONS
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., then prove that:
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
Find the geometric means of the following pairs of number:
−8 and −2
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. if S5 = 1023 , r = 4, Find a
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Express the following recurring decimal as a rational number:
`2.bar(4)`
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.