English

The Fifth Term of a G.P. is 81 Whereas Its Second Term is 24. Find the Series and Sum of Its First Eight Terms. - Mathematics

Advertisements
Advertisements

Question

The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.

Solution

Let a be the first term and r be the common ratio of the G.P.

\[a_2 = 24 \]

\[ \Rightarrow a r^{2 - 1} = 24\]

\[ \Rightarrow ar = 24 . . . \left( i \right)\]

\[\text { Similarly }, a_5 = 81 \]

\[ \Rightarrow a r^{5 - 1} = 24\]

\[ \Rightarrow a r^4 = 81\]

\[ \Rightarrow \frac{24 \times r^4}{r} = 81 \left[ \text { From } \left( i \right) \right]\]

\[ \Rightarrow r^3 = \frac{81}{24} \]

\[ \therefore r^3 = \frac{27}{8}\]

\[ \Rightarrow r = \frac{3}{2}\]

\[\text { Putting  }r = \frac{3}{2}\text {  in } \left( i \right)\]

\[3a = 48 \]

\[ \Rightarrow a = 16\]

\[\text { So, the geometric series is } 16 + 24 + 36 + . . . + 16 \left( \frac{3}{2} \right)^8 \]

\[\text { And }, S_8 = 16\left( \frac{\left( \frac{3}{2} \right)^8 - 1}{\frac{3}{2} - 1} \right) \]

\[ \Rightarrow S_8 = 32\left( \frac{6561 - 256}{256} \right) = \frac{32 \times 6305}{256} = \frac{6305}{8}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.3 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.3 | Q 13 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


For the G.P. if r = `1/3`, a = 9 find t7


For the G.P. if a = `2/3`, t6 = 162, find r.


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Express the following recurring decimal as a rational number:

`0.bar(7)`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×