Advertisements
Advertisements
Question
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
Solution
Here,a = \[\sqrt{3}\] Common ratio,r = \[\sqrt{3}\]
Sum of n terms, Sn = \[39 + 3\sqrt{3}\]
\[S_n = \sqrt{3}\left( \frac{\left( \sqrt{3} \right)^n - 1}{\sqrt{3} - 1} \right) \]
\[ \Rightarrow 39 + 13\sqrt{3} = \frac{\sqrt{3}}{\left( \sqrt{3} - 1 \right)}\left\{ \left( \sqrt{3} \right)^n - 1 \right\}\]
\[ \Rightarrow \left( \sqrt{3} \right)^n - 1 = \frac{\left( 39 + 13\sqrt{3} \right)\left( \sqrt{3} - 1 \right)}{\sqrt{3}}\]
\[ \Rightarrow \left( \sqrt{3} \right)^n = 1 + 26\]
\[ \Rightarrow \left( \sqrt{3} \right)^n = 27 \]
\[ \Rightarrow \left( \sqrt{3} \right)^n = \left( \sqrt{3} \right)^6 \]
\[ \therefore n = 6\]
APPEARS IN
RELATED QUESTIONS
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1