English

For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r - Mathematics and Statistics

Advertisements
Advertisements

Question

For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r

Sum

Solution

Let a be the first term and r be the common ratio of G.P.

Then S3 = 125 and S6 =125 + 27 = 152

∴ `"S"_6/"S"_3= 152/125`

∴ `([("a"("r"^6 - 1))/("r" - 1)])/([("a"("r"^3 - 1))/("r" - 1)]) = 152/125`

∴ `("r"^6 - 1)/("r"^3 - 1) = 152/125`

∴ `(("r"^3 - 1)("r"^3 + 1))/("r"^3 - 1) = 152/125`

∴ r3 + 1 = `152/125`

∴ r3 = `152/125 - 1 = 27/125 = (3/5)^3`

∴ r = `3/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Exercise 2.2 [Page 31]

APPEARS IN

RELATED QUESTIONS

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If the first term of a G.P. a1a2a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is


The fractional value of 2.357 is 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


For a G.P. if a = 2, r = 3, Sn = 242 find n


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


The third term of a G.P. is 4, the product of the first five terms is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×