Advertisements
Advertisements
Question
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
Options
−2/5
−3/5
2/5
none of these
Solution
− \[\frac{2}{5}\] If the first term is 1, then, the G.P. will be\[1, r, r^2 , r^3 , . . .\]
\[\text{ Now }, 5 r^2 + 4r = 5\left( r^2 + \frac{4}{5}r \right)\]
\[ = 5\left( r^2 + \frac{4}{5}r + \frac{4}{25} - \frac{4}{25} \right)\]
\[ = 5 \left( r + \frac{2}{5} \right)^2 - \frac{4}{5}\]
\[\text{ This will be the least when } r + \frac{2}{5} = 0, i . e . r = - \frac{2}{5} .\]
APPEARS IN
RELATED QUESTIONS
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Evaluate `sum_(k=1)^11 (2+3^k )`
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
For the G.P. if r = `1/3`, a = 9 find t7
The numbers 3, x, and x + 6 form are in G.P. Find x
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For a G.P. If t4 = 16, t9 = 512, find S10
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2