English

If A, B, C Are in A.P. and X, Y, Z Are in G.P., Then the Value of Xb − C Yc − a Za − B is - Mathematics

Advertisements
Advertisements

Question

If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is

Options

  •  0

  • 1

  •  xyz

  •  xa yb zc

MCQ

Solution

 1 

\[\text{ a, b and c are in A . P }. \]
\[ \therefore 2b = a + c . . . . . . . . \left( i \right)\]
\[\text{ And, x, y and z are in G . P } . \]
\[ \therefore y^2 = xz\]
\[\text{ Now }, x^{b - c} y^{c - a} z^{a - b} \]
\[ = x^{b + a - 2b} y^{2b - a - a} z^{a - b} \left[ \text{ From } \left( i \right) \right]\]
\[ = x^{a - b} y^{2\left( b - a \right)} z^{a - b} \]
\[ = \left( xz \right)^{a - b} \left( xz \right)^{b - a} \left[ \text{ From } \left( ii \right), y^2 = xz \right]\]
\[ = \left( xz \right)^0 \]
\[ = 1\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.8 [Page 57]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.8 | Q 3 | Page 57

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Find the sum of all numbers between 200 and 400 which are divisible by 7.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Which term of the A.P. 4, 9, 14, ... is 254?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of all integers between 50 and 500 which are divisible by 7.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P. 


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


Write the sum of first n odd natural numbers.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×