English

If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1). - Mathematics

Advertisements
Advertisements

Question

If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).

Sum

Solution

To prove: S1 : S2 = (2n + 1) : (n + 1)

We know that the sum of AP is given by the formula:

`S = n/2(2a + (n - 1)d)`

Substituting the values in the above equation,

`S_1 = (2n + 1)/2 (2a + 2nd)`

For the sum of odd terms, it is given by,

`S_2 = a_1 + a_3 + a_5 + .....a_(2n) + 1`

`S_2 = a + a + 2d + a + 4d + .... + a + 2nd`

`S_2 = (n + 1)a + n (n + 1)d`

`S_2 = (n + 1)(a + nd)`

Hence,

`S_1 : S_2 = (2n + 1)/(n + 1)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.4 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.4 | Q 30 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 3, 8, 13, ... is 248?


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


Write the sum of first n even natural numbers.


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×