English

The Income of a Person is Rs 300,000 in the First Year and He Receives an Increase of Rs 10000 to His Income per Year for the Next 19 Years. Find the Total Amount, He Received in 20 Years. - Mathematics

Advertisements
Advertisements

Question

The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.

Solution

Let 

\[S_n\] denote the total amount the person receives in n years.
Let d be the common increment in his income every year.
Let a denote the initial income of the person.
Here, a = 300,000, d = 10000, n = 20
Total amount at the end of 20 years:

\[S_{20} = \frac{20}{2}\left\{ 2 \times 300, 000 + (20 - 1)10, 000 \right\}\]

\[ = 79, 00, 000\]

Therefore, the total amount the person receives in 20 years is Rs 79,00,000.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.7 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.7 | Q 10 | Page 49

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 84, 80, 76, ... is 0?


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of all integers between 50 and 500 which are divisible by 7.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×