Advertisements
Advertisements
Question
Write the common difference of an A.P. the sum of whose first n terms is
Solution
Sum of the first n terms of an A.P. = \[\frac{p}{2} n^2 + Qn\]
Sum of one term of an A.P. = \[S_1\]
\[\Rightarrow \frac{p}{2} \left( 1 \right)^2 + Q\left( 1 \right)\]
\[ \Rightarrow \frac{p}{2} + Q\]
Sum of two terms of an A.P. =
\[\Rightarrow \frac{p}{2} \left( 2 \right)^2 + Q\left( 2 \right)\]
\[ \Rightarrow 2p + 2Q\]
Now, we have:
\[a_1 + a_2 = S_2 \]
\[ \Rightarrow \frac{p}{2} + Q + a_2 = 2p + 2Q\]
\[ \Rightarrow a_2 = Q + \frac{3}{2}p\]
Common difference:
\[d = a_2 - a_1 \]
\[ = \left( Q + \frac{3}{2}p \right) - \left( Q + \frac{p}{2} \right)\]
\[ = p\]
APPEARS IN
RELATED QUESTIONS
Find the sum of odd integers from 1 to 2001.
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
nth term of the A.P. 13, 8, 3, −2, ...
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of all odd numbers between 100 and 200.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
Find the sum of odd integers from 1 to 2001.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.