Advertisements
Advertisements
Question
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Solution
Given:
< an > is an A.P.
\[\frac{a_4}{a_7} = \frac{2}{3}\]
\[ \Rightarrow \frac{a + \left( 4 - 1 \right)d}{a + \left( 7 - 1 \right)d} = \frac{2}{3} \]
\[ \Rightarrow \frac{a + 3d}{a + 6d} = \frac{2}{3}\]
\[ \Rightarrow 3(a + 3d) = 2(a + 6d) \]
\[ \Rightarrow 3a + 9d = 2a + 12d\]
\[ \Rightarrow a = 3d . . . . (i)\]
\[\therefore \frac{a_6}{a_8} = \frac{a + \left( 6 - 1 \right)d}{a + \left( 8 - 1 \right)d}\]
\[ \Rightarrow \frac{a_6}{a_8} = \frac{a + 5d}{a + 7d}\]
\[ \Rightarrow \frac{a_6}{a_8} = \frac{3d + 5d}{3d + 7d} \left( \text { From }(i) \right)\]
\[ \Rightarrow \frac{a_6}{a_8} = \frac{8d}{10d}\]
\[ \Rightarrow \frac{a_6}{a_8} = \frac{4d}{5d} = \frac{4}{5}\]
APPEARS IN
RELATED QUESTIONS
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Which term of the A.P. 3, 8, 13, ... is 248?
Which term of the A.P. 4, 9, 14, ... is 254?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of first n odd natural numbers.
Find the sum of all even integers between 101 and 999.
Find the sum of all integers between 100 and 550, which are divisible by 9.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.