English

Which Term of the Sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is (A) Purely Real (B) Purely Imaginary? - Mathematics

Advertisements
Advertisements

Question

Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?

Solution

12 + 8i, 11 + 6i, 10 + 4i...
This is an A.P.
Here, we have:
a = 12 + 8i

\[d = \left( 11 + 6i - 12 - 8i \right)\]

\[ = \left( - 1 - 2i \right)\]

\[\text { Let the real term be } a_n = a + \left( n - 1 \right)d . \]

\[ a_n = \left( 12 + 8i \right) + \left( n - 1 \right)\left( - 1 - 2i \right)\]

\[ = \left( 12 + 8i \right) + \left( - n + 1 - 2in + 2i \right)\]

\[ = 12 + 8i - n + 1 - 2in + 2i\]

\[ = \left( 13 - n \right) + \left( 8 - 2n + 2 \right)i\]

\[ = \left( 13 - n \right) + \left( 10 - 2n \right)i\]

\[ a_n \text { has to be real } . \]

\[ \therefore \left( 10 - 2n \right) = 0\]

\[ \Rightarrow n = 5\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.2 | Q 5.2 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Is 68 a term of the A.P. 7, 10, 13, ...?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of first n natural numbers.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


Find the sum of odd integers from 1 to 2001.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


Write the sum of first n odd natural numbers.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×