English

Find the Sum of First N Natural Numbers. - Mathematics

Advertisements
Advertisements

Question

Find the sum of first n natural numbers.

Solution

The first n natural numbers are:
1, 2, 3, 4...
a = 1, d = 1, Total terms = n

\[S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]

\[ \Rightarrow S_n = \frac{n}{2}\left[ 2 \times 1 + (n - 1)1 \right]\]

\[ \Rightarrow S_n = \frac{n}{2}\left[ 2 + (n - 1)1 \right]\]

\[ \Rightarrow S_n = \frac{n}{2}\left[ n + 1 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.4 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.4 | Q 3 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of all integers between 50 and 500 which are divisible by 7.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


If m th term of an A.P. is n and nth term is m, then write its pth term.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×