English

If the Sum of P Terms of an A.P. is Q and the Sum of Q Terms is P, Then the Sum of P + Q Terms Will Be - Mathematics

Advertisements
Advertisements

Question

If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be

Options

  • 0

  •  p − q

  • p + q

  •  − (p + q)

MCQ

Solution

 − (p + q)

\[S_p = q\]

\[ \Rightarrow \frac{p}{2}\left\{ 2a + \left( p - 1 \right)d \right\} = q\]

\[ \Rightarrow 2ap + \left( p - 1 \right)pd = 2q . . . . . \left( 1 \right)\]

\[ S_q = p\]

\[ \Rightarrow \frac{q}{2}\left\{ 2a + \left( q - 1 \right)d \right\} = p\]

\[ \Rightarrow 2aq + \left( q - 1 \right)qd = 2p . . . . . \left( 2 \right)\]

\[\text { Multiplying equation } \left( 1 \right) \text { by q and equation } \left( 2 \right) \text { by p and then solving, we get }: \]

\[d = \frac{- 2\left( p + q \right)}{pq}\]

\[\text { Now }, S_{p + q} = \frac{\left( p + q \right)}{2}\left[ 2a + \left( p + q - 1 \right)d \right]\]

\[ = \frac{p}{2}\left[ 2a + \left( p - 1 \right)d + qd \right] + \frac{q}{2}\left[ 2a + \left( q - 1 \right)d + pd \right]\]

\[ = S_p + \frac{pqd}{2} + S_q + \frac{pqd}{2}\]

\[ = p + q + pqd\]

\[ = p + q - \frac{2\left( p + q \right)pq}{pq}\]

\[ = - (p + q)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.9 [Page 51]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.9 | Q 2 | Page 51

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Which term of the A.P. 4, 9, 14, ... is 254?


Is 302 a term of the A.P. 3, 8, 13, ...?


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of first n natural numbers.


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


Write the common difference of an A.P. whose nth term is xn + y.


Write the sum of first n odd natural numbers.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×