Advertisements
Advertisements
Question
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
Solution
Given:
nth term of the A.P. 9, 7, 5... is the same as the nth term of the A.P. 15, 12, 9...
\[\text { Considering } 9, 7, 5...\]
\[a = 9, d = \left( 7 - 9 \right) = - 2\]
\[ n^{th} \text { term } = 9 + (n - 1)( - 2) \left[ a_n = a + \left( n - 1 \right)d \right]\]
\[ = 9 - 2n + 2\]
\[ = 11 - 2n . . . (i)\]
\[\text { Considering } 15, 12, 9, ...\]
\[a = 15, d = \left( 12 - 15 \right) = - 3\]
\[ n^{th} \text { term } = 15 + (n - 1)( - 3) \left[ a_n = a + \left( n - 1 \right)d \right]\]
\[ = 15 - 3n + 3\]
\[ = 18 - 3n . . . (ii)\]
Equating (i) and (ii), we get:
\[11 - 2n = 18 - 3n\]
\[ \Rightarrow n = 7\]
Thus, 7th terms of both the A.P.s are the same.
APPEARS IN
RELATED QUESTIONS
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.